十八禁啪啦拍无遮拦视频_囯精品人妻无码一区二区三区99_久久精品噜噜噜成人AV_秋霞午夜无码鲁丝片午夜精品_中文字幕人妻在线中字

學術動態

學術動態

學術活動

當前您的位置: 網站首頁 - 學術動態 - 學術活動 - 正文

講座通知: EM meets Boosting inbig genomic data analysis

作者: 編輯: 發布時間:2016-12-24

題目: EM meets Boosting inbig genomic data analysis

主講人:楊燦教授 香港浸會大學統計系

時間:1227號(周二),上午10:30-11:20

地點:bwin必贏唯一官網313會議室

歡迎廣大師生參加!



報告內容

Recent internationalprojects, such as the Encyclopedia of DNA Elements (ENCODE) project, theRoadmap project and the Genotype-Tissue Expression (GTEx) project, havegenerated vast amounts of genomic annotation data, e.g., epigenome andtranscriptome. There is great demanding of effective statistical approaches tointegrate genomic annotations with the results from genome-wide associationstudies. In this talk, we introduce a statistical framework, named IMAC, forintegratingmultipleannotationstocharacterizefunctional roles of genetic variants that underlie human complex phenotypes.For a given phenotype, IMAC can adaptively incorporates relevant annotations forprioritization of genetic risk variants, allowing nonlinear effects among theseannotations, such as interaction effects between genomic features.Specifically, we assume that the prior probability of a variant associated withthe phenotype is a function of its annotations F(X), where X is thecollection of the annotation status and F(X)is an ensemble of decision trees, i.e., F(X)= \sum_kf_k(X) and f_k(X) is a shallow decision tree. We havedeveloped an efficient EM-Boosting algorithm for model fitting, where a shallowdecision tree grows in a gradient-Boosting manner (Friedman J. 2001) at eachEM-iteration. Our framework inherits the nice property of gradient boostedtrees: (1) The gradient accent property of the Boosting algorithm naturallyguarantees the convergence of our EM-Boosting algorithm. (2) Based on thefitted ensemble \hat{F}(X), we areable to rank the importance of annotations, measure the interaction amongannotations and visualize the model via partial plots (Friedman J. 2005). UsingIMAC, we performed integrative analysis of genome-wide association studies onhuman complex phenotypes and genome-wide annotation resources, e.g., Roadmapepigenome. The analysis results revealed interesting regulatory patterns ofrisk variants. These findings deepen our understanding of genetic architecturesof complex phenotypes. Thestatistical framework developed here is also broadly applicable to many otherareas for integrative analysis of rich data sets.


個人簡介

楊燦教授于2011年畢業于香港科技大學電子信息工程系,獲得博士學位。2011-2012耶魯大學做博士后研究。2012-2014年在耶魯大學做associate researchscientist2014年起,其進入香港浸會大學數學系做助理教授。2012年他獲得了the winner of the 2012Hong Kong Young Scientist稱號。其研究興趣主要集中在statisticalgenomics, bioinformatics, pattern recognition and machine learning.


信息管理與電子商務系

2016.12.23